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AbIInct-A higher-order shear deformation theory of plates accounting for the von Karman
strains is presented. The theory contains the same dependent unknowns as in the Hencky-Mindlin
type first-order shear deformation theory and accounts for parabolic diatribution of the transverse
shear strains through the thickness of the plate. Exact solutions of simply supported plates arc
obtained using the linear theory and the results arc compared with the exac:t solutions of 3-D
clastic:ity theory, the first order shear deformation theory, and the c1assical plate theory. The pracnt
theory predicts the deftections, stresses, and frequencies more accurately when compared to the
first-order theory and the classical plate theory.

INTRODUCTION

First general solutions to the equations oflincar elasticity corresponding to thin plates were
presented by Cauchy[l] and Poisson[2] using the methods of series expansion, and by
Kirchhoff[3] using certain hypothesis. An expansion in powers of the thickness of the plate
was used by Goodier[4] to obtain a general solution in terms of a series of biharmonic
functions for a plate subjected to edge tractions. It is well known from experimental
observations that the Poisson-Kirchhoff theory ofplates, in which it is assumed that normals
to the midplane before deformation remain straight and normal to the plane after defor
mation, underpredicts deflections and overpredicts natural frequencies. These results are
due to the neglect of transverse shear strains in the classical plate theory (CPT).

Refined plate theories, due to Levy[5], Reissner[6,7], Hencky[8], Mindlin[9], and
Kromm [10] are improvements ofthe classical plate theory in that they include the effect of
transverse shear deformation (see[I 1]). In the Hencky-Mindlin theories the displacements
are expanded in powers of the thickness of the plate (see[l2-14]). Extensions of the
Kirchhoff-von Karman theory[l5], a geometrically nonlinear theory associated with the
classical plate theory, to refined plate theories were considered by Reissner[16, 17] and
Medwadowski[18]. Extension of the Kromm's theory to geometrically nonlinear analysis,
in the sense of von Karman, is due to Schmidt[19].

These higher-order theories are cumbersome and computationally more demanding,
because, with each additional power of the thickness coordinate, an additional dependent
unknown is introduced into the theory. Further, these theories require an arbitrary cor
rection to the transverse'shear stiffnesses, and the transverse shear stresses do not satisfy the
conditions ofzero transverse shear stresses on the top and bottom surfaces of the plate. Of
course, the Reissner-Kromm theories satisfy the stress free conditions, but these are based
on the stress fields. Thus, need exists for the development of a higher-order shear defor
mation theory that avoids the shear correction factors, and accurately predicts transverse
sh~ar stresses. Levinson [20] considered such a plate theory, in which the in-plane displace
ments are expanded as cubic functions of the thickness coordinate. Unfortunately, both
Levinson[20] and Schmidt[19] used variationally inconsistent set of equilibrium equations
(they used the equilibrium equations of the classical plate theory), and therefore did not
correctly account for all of the strain energy associated with the displacement field.

The present· theory accounts for the cubic variation of the in-plane displacements
through the plate thickness, the von Karman strains, and transverse shear strains which
vanish on the top and bottom faces of the plate. The equations ofmotion are derived using
Hamilton's principle, and therefore they are consistent with the assumed displacement field.
In order to illustrate the accuracy of the present theory, the exact solutions of the linear
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theory are presented for bending and vibration of simply supported, homogeneous, iso
tropic and orthotropic rectangular plates. Comparison of the present solutions with the 3D
elasticity solutions shows that the present theory yields more accurate stresses and natural
frequencies than the first-order shear deformation theory.

KINEMATICS

We begin with the displacement field in which the displacements along the x- and
y-directions are expanded as cubic functions of the thickness coordinate, and the transverse
deflection is assumed to be constant through thickness:

u.(x, y, z, t) =u(x, y, t) + zr/J,,(x,y, t) + Z2~,,(X, y, t) + Z3{,,(X, y, t)

U2(X,y, z, t) = v(x,y, t) + zr/J,(x,y, t) + Z2~,(X,y, t) + Z3{,(X,y, t)

U3(X, y, t) =' w(x, y, t). (1)

Here u, v, and wdenote the displacements of a point (x, y) on the midplane, and r/J" and r/Jy

are the rotations of normals to midplane about the y and x axes, respectively. The functions
~'" C, ~" and {, will be determined using the condition that the transverse shear stresses,
Un =' Us and uy: =' u. vanish on the plate top and bottom surfaces:

us(x,y, ±~, t) =' 0, u{x,y, ±~, t) = 0 (2)

these conditions are equivalent to the requirement that the corresponding strains be zero on
these surfaces. We have

Setting £s(x,y, ±h/2, t) and £.(x,y, ±h/2, t) to zero, we obtain

(3)

~,,=o,

4 (OW ),,, = - 3h2 ox + r/J" ,

The displacement field in eqn (I) becomes

~,=o

4 (OW )
{y = - 3h2 oy + r/J, . (4)

UI =u +{r/J,,-~(~Y(r/J,,+ ~:)J

U2='V +{r/J,-~(~Y("',+ ~;)J (5)

One should note that, although cubic variation of the in-plane displacements through
thickness is accounted, the displacement field in cqn (5) contains the same number of
dependent variables as in the first-order shear deformation theory. This is an attractive
feature from finite-element modeling considerations.
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The von Kannan strains associated with the displacement field in eqn (5) are

£, == £,0 + z(",O + Z2",2)

£2 == £2° + Z("20 + Z2"22)

£3=0

£. == £,.0 + Z2,,/

£s == £so + Z2"S2

4 =4° + z(~o+ z2"l)

where
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(6)

(7)

(8a)

It is interesting to note that the new strain components contain higher-order derivatives of
the transverse deflection.

CONSTITUTIVE EQUATIONS

For a plate of constant thickness h and made of an orthotropic material (i.e. the plate
possesses a plane of elastic symmetry parallel to the x-y plane) the constitutive equations
can be written as

{::}=[~:: ~: ~ ]{::},{::}=[~.. ~J{~}
11, 0 0 Q" £,

where Qq are the plane-stress reduced elastic constants in the material axes of the plate:

(8b)

EQUATIONS OF MOTION
Here we use Haminton's principle to derive the equations of motion appropriate for

the displacement field (5) and constitutive equations (8). The principle can be stated in
analytical fonn as (see Reddy and Rasmussen[21])
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= _ r/[f {N(a~u awa~w) Mo~l{Ix p[_~(O~l{Ix 02~W)JJo R. I OX + OX OX + 1 OX + 1 3h 2 OX + Ox2

+ N(o~v OW o~w) M olJl{Iy p[ _~ (OlJl{Iy 02~W)J2 oy + oy oy + 2 oy + 2 3h2 oy + oy2

(9)

where the stress resultants NI> MI, PI' QI and RI are defined by

and the inertias 11..i =1, 2, 3, 4, 5, 7) are defined by

(10)

(11)
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Integrating the expressions in eqn (9) by parts, and collecting the coefficients of bU, t5v,
t5w, t5"'x' and 15"'" we obtain the following equations of motion:

aNI aN, _ 'I" 4 aw
t5u: ax + ay = Ilu + 2"'x - 3h2 14 ax

aN, aN2 .. r" 4 aw
t5v: ax + ay =Ilv + 12"', - 3h2 14 ay

where

8 16
~ =13 - 3h2I, + 9h 4 I,.

The boundary conditions are of the form: specify

u" or N"

(12)

(13)

w or Q"

oW
-orPan "
",,,orM,,

"'lIS or MIlS

on r

(14)

where r is the boundary of the midplane !2 of the plate, and

"II =unx + vn"",,, = -un, + vnx

N. =N.nx
2+ N'J!I/ +2Nilxn,

NIII = (N2- N.)nxn, + N,(n,?- n/)

M" = Ji.nx
2+ Ji'J!l,2 + 2Ji",xn,

Mill = (Ji2- Ji.)nxn, + Ji,(nx2- n,~

A A 4 aPIII ...,

Q" =",.nx + "'~, - 3h2 as + 1"1" (15)
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and Pn and Pili are defined by expressions analogous to Nn and NIII, respectively. This
completes the derivation of the governing equations. An examination of the boundary
conditions in eqn (14) shows that both Y,n and ow/an are geometric boundary conditions
in the present theory. Consequently, one should use interpolation functions that guarantee
interelement continuity of slopes in the finite-element modeling of the theory.

The resultants defined in eqn (10) can be related to the total strains in eqn (6) by the
fonowing equations:

where Aij, Bij, etc. are the plate stiffnesses, defined by

or

Aij =Qij, DIJ =Q/..h 3/12)

FIJ= Q/..h 5/80), Bu- Q/..h'/448)

A.. = G23h, A55 - G13h

D.. = G23(h
3/12), D55 =G13(h

3/12)

F.. = G23(h 5/80), F55 - G13(h
5/80).

(17)

(18)
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EXACT SOLUTIONS FOR SIMPLY SUPPORTED RECTANGULAR PLATES

The exact analytical solution of the nonlinear partial differential equations in eqn (12)
is an impossible task. Even the linear equations do not allow an exact solution for all
geometries and boundary conditions. Here we consider the exact solutions ofeqns (12) and
(13) for infinitesimal displacement theory ofsimply supported, rectangular plates. Since the
coupling between stretching and bending is zero for the linear theory, we consider only the
flexural displacements and natural frequencies. The following "simply-supported" bound
ary conditions are assumed (a and b are the plane-form dimensions and the origin of the
coordinate system is taken at the lower left comer of the plate):

w(x, 0) - w(x, b) - w(O,y) - w(a,y) - 0

P2(x, 0) - P2(x, b) =PI(O,y) =P\(a,y) =0

M,.<x, 0) - M2(x,b) = M\(O,y) = MI(a,y) = 0

"'JC(x, 0) ="'JC(x, b) ="',(O,y) ="',(a,y) =O.

(19)

The resultants ofeqn (16) can be expressed in terms ofthe generalized displacements, for
the case of infinitesimal displacements, as

ou ov
N1 =AII - +A I2 -

ox oy

ou ov
N2 -AI2 - +..422 -ox oy

N6 = A66(au + iJv)
oy ax

M. = D II O:X
JC
+D I2 a:; + FII ( - 3~2)(a:: + ~:~) + FI{ - 3~2xa~ + ~:~)

M2 - D I2 O:X
JC
+D22 a~ +F1{ - 3~2)(a:: + ~:~) + F22( - 3~2)(O:; + ~::)

( a",,, a",,) ( 4 )(a",JC a"" iPW)M6 =D66 -+- +F66 -- -+-+2--ay ax 3h2 oy ax iJxoy

Q2=A44(",,+ ~;)+D44( -:2)(""+:;)
QI = As{"'x +:;) +Ds{ - :2)("''' +::)

PI == FlI at: +F12 a:; +B II( - 312)e:: + ~::) +B I{ - 3~iX* + ~:~)

_ o"'JC a"" (4 )(0"'" 02W
) (4 )(0"', 02W

)P2- FI2 ax + F22 oy + B I2 - 3h2 ax + ox2 + H22 - 3h2 ay + ay2

. (a"" O"'x) (4 )(o"'x OY" 02W
)

P6 -F,,\ ax +BY +H66 - 3h2 ay + ax + 2 Dxay

R2 = D44(~; + y,,) +F~ - :2)("" + ~;)

RI - Ds{:: + "'x) + Fs{ - :2)("'JC + ~;). (20)
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The last three equations in eqn (12), for the linear theory. can be expressed in terms of the
displacements as

(2la)

(2lb)
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(2Ic)

Following the Navier solution procedure, we assume the following solution form that
satisfies the boundary conditions in eqn (19),

GO

W = L W.... sin (XX sin fJy e-1oI1

M,lI-1

GO

1/1" = L X".. cos (XX sin fJy e-1oI1

M,lI-1

ClO

1/1, = L Y".. sin (XX cos fJy e-1oI1

_-I

(22)

where IX =mn/a and fJ =nn/b, andc.o is the frequency ofthe natural vibration. Further
we assume that the applied transverse load, q, can be expanded in the double-Fourier series
as

GO

q = L Q.... sin (XX sin fJy._-I (23)

Substituting eqns (22) and (23) into eqn (21), and collecting the coefficients, we obtain

(24)

for any fixed values of m and n. The clements c/j =cji and MIj =Mji of the coefficient
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matrices [c] and [M] are given by
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2 2 8 (4)2cn = Ass + oc DII + fJ D", - h2 Dss + h2 Fss

- 3~2 (oc 2FII + fJ 2F",) + (3~2Y(OC2HII + fJ2H",)

C23 = ocfJ[D I2 + D", - 3~2 (F12 +F",)+ (3~2Y(HI2+H~]

(4) 2 2Mil = I. + I, 3h2 (oc + fJ )

Mn = 1" M 33 =1" M 23 =o.

For static bending eqn (24) takes the form

and for free vibration we have

(25)

(26)

(27)
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and Qil are given byeqn (8b).
The static solution is given by eqn (22) with t = 0 and (W, X, Y) from eqn (26). Note

that for uniformly distributed load QIM is given by

{

16q°2' m, n = 1,3, ...
Q mnn

IM=

O,m,n = 2,4, ...

NUMERICAL RESULTS

(28)

Bending
Numerical results are presented in Tables I and 2 for homogeneous isotropic (v = 0.3)

and orthotropic plates under uniformly distributed transverse load of intensity qo. The

Table 1. Comparison of deftee:tions and stresses in isotropic (v .. 0.3) plates under uniformly
distributed transverse load (m, n = 1,2, ... , 19)

Constitutive Egn. Equit lbr;um Eqn.
~/. ./h source W tOI ta2 <;;"6 "". "'5 "'. "'5

HSOT 0.0535 0.29.. 0.29.. 0.2112 0••8.0 0••840 0.3703 0.i703
5 (0.2949)+ (0.2949) (0.212') (0.4871 ) (0.4871 ) (0.3324) (0.3324)

FSOT 0.0536 0.2873 0.2873 0.1946 0.3928 0.3928 0.4909 0.4909

HSOT 0.0467 0.2890 0.2890 0.1990 0.4890 0.489U 0.4543 0.4543
1 10 (0.2893) (0.2893) (0.1996) (0.4937) (0.4937) (0 ...17) (0."17)

FSOT 0.0467 0.2873 0.2873 0.1946 0.3928 0.3928 0.4909 0.4909

HSOT 0.0444 0.2873 0.2873 O. \g47 0.4909 0.4909 0.4905 0.4905
100 (0.2874) (0.2874) (0.1918) (0.4965) (0.4965) (0.4959) (0.4959)

FSOT 0.444 0.2873 0.2873 0.1946 0.3928 0.3928 0.4909 0.4909
(0.3972) (0.3972) (0 •.,65) (0.4965)

CPT 0.044. 0.2873 0.2873 0.1946 0.0 0.0 0•.,09 0."09
(0.4965) (0.4965)

5 I HSOT 0.1248 0.6202 0.2818 0.2927 0.6745 0.5201 0.5615 0.4569
FSOT 0.1248 0.6100 0.2779 0.2769 0.5451 0.4192 0.6813 0.6813

HSOT 0.1142 0.6125 0.2789 0.2809 0.6794 0.5230 0.6448 0.5051
2 10 FSOT 0.1142 0.6100 0.2779 0.2769 0.5451 0.4192 0.6813 0.5240

HSOT 0.1106 0.6100 0.2779 0.2769 0.6813 0.5240 0.6809 0.5238
100 FSOT 0.1106 0.6100 0.2779 0.2769 0.5451 0.4192 0.6813 0.5240

CPT 0.1106 0.6100 0.2779 0.2769 0.0 0.0 0.6813 0.5240

+nulllbe.. in p.renthesis ,,'Ire obt.ined by ... n • 1.3.....29 1n t~e serlos of Eq. (22).
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Table 2. Comparison of deflections and strcsses in orthotropic square plates under uniform
transverse load (m, n = 1,3, ... ,19)

Cll w/ hqo "l/qo ~/qo(*)

b/a h/a Exactt HSOPT FSOPT CPT Exact HSOPT FSOPT CPT Exact HSOPT FSOPT CPT

0.05 21,542 21,542 21.542 21,7.10 262.67 262.6 262.0 262.2 14.048 13.98 11.20 0.0
(13.57) (14.00) ( 14.00)

0.1ll 1,408.5 1,4U8.5 1.408.5 1.326 65.975 65.95 65.38 65.55 6.927 6.958 5.599 0.0
(6.229) (6.998) (6.998)

0.14 387.23 387.5 387.6 345.1 33.862 33.84 33.27 33.44 4.878 4.944 3.998 0.0
(4.027) (4.997) (4.999)

0.05 10,443 10450. 10450. 10250. 144.31 144.3 143.9 144.4 10.873 10.85 8.701 0.0
(10.45 ) (10.88) (10.88)

I 0.10 688.57 689.5 689.6 640.7 36.U21 36.01 35.62 36.09 5.341 5.382 4.338 0.0
(4.657) ( 5.422) (5.442)

0.14 191.07 191.6 191.6 166.8 18.346 18.34 17 .94 18.41 3.731 3.805 3.086 0.0
(2.884) (3.857) (3.887)

0.05 2,048.7 2051.0 2051.0 1989.0 40.657 40.67 40.50 40.84 6.243 6.163 4.948 0.0
(5.165) (6.184) (6.214)

0.5 0.10 139.08 139.8 139.8 124.3 10.025 10.05 9.888 10.21 2.951 2.885 2.436 0.0
(2.893) (3.044) (3.107)

0.14 39.790 40.21 40.23 32.36 5.036 5.068 4.903 5.209 1.999 2.080 1.705 0.0
(1.186) (2.131 ) (2.7.19)

*nunobers in parenthesis denote the shear stress values obtained from the stress equilibrium equations.

·from Reference [22]

following orthotropic material properties, typical of aragonite crystals (converted from
elastic constants given in[22] to engineering constants), are used.

EJ = 20.83 X 106 psi, E2 = 10.94 x 106 psi

GI2 = 6.10 X 106 psi, GJ3 = 3.71 x 106 psi, G23 = 6.19 x 1<1' psi

1112 = 0.44, 1121 = 0.23.

The elastic constant ell used in Table 2 has the value of 23.2 x 106psi. The following
nondimensionalizcd deftections and stresses are tabulated in Table 1:

_ (a b h) 2 2'U/=U\2'2' ±2 (h /qo'l ),1 = 1,2

ii6 =U{0, 0, ±~)<h2/qgtl2)

ii. =u{~, 0, 0)(h/qgtl )

iis =us(0, %' 0)<hlqgtl).

(30)

Two pairs of transverse shear stresses, one obtained from the constitutive equations and the
other from equilibrium equations arc presented in the tables. In the first-order shear
deformation theory, the shear correction factors arc assumed to be L 12 = Kl = 5/6. The
following conclusions can be drawn from the results of Tables I and 2:

(1) Even for the isotropic plates the effect of transverse shear deformation is significant.
The classical plate theory (CPT) under predicts (for alb - 1) the deflections by 4.~1o at
alh = 10 and 17% at alh = 5, and stress UJ by o:r'lo at a/h = 10 and 2.6% at a/h = 5 when
compared to the higher-order shear deformation plate theory (HSDPT); see Table 1.
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Fig. I. Distribution of the transverse shear streas across the thickness of limply supported
rectangular plates under uniformly distributed transverse load (orthotropic case).

(2) The first-order shear defonnation plate theory (FSDPT) is quite accurate when the
transverse deflections are concerned. But the stresses are no better than those predicted by
CPT; see Tables 1 and 2.

(3) The transverse shear stresses predicted by the constitutive equations (8) of the
higher-order theory are the most accurate of the three plate theories when compared to the
exact solution ofSrinivas and Rao[22]; see Table 2 and Fig. 1. It is interesting to note that
FSDPT and CPT give more accurate transverse shear stresses than HSDPT when the stress
equilibrium equations of 3-D elasticity theory are used:

etc. (see Appendix I).
(4) The infinite series for deflections converges faster than those for stresses; the

convergence is slower for thick plates than for thin plates; see Table 1.
Insummary, thehiaher-ordertheory yieldsmoreaccuratedistributionofstresses,especially

shear stresses, when compared to the other plate theories. This feature of the higher-order
theory is ofconsiderable interest in the analysis of laminated composite plates, because an
accurate prediction of the interlaminar shear stresses enables an accurate detennination of
the strength and failure of laminates.

Natural vibration
The numerical results of the natural vibration ofisotropic (v ... 0.3) and orthotropic (see

eqn (29) for material properties) square plates are presented in Tables 3.and 4, resp. The
results are compared with the exact solutions of the three-dimensional elasticity
theory[22-24]. In Table 4 the first three eigenvalues obtained by the preICIlt theory are
compared with the exact values, and the values obtained by FSDPT and CPT. From the
results presented in Tables 3 and 4 the following observations can be made:
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Table 3. Comparison of natural frequencies. cii ... w/r(.JiiG). of isotropic (v ... 0.3) plates
(alh = 10)

P: b/a • I r;:; b/a • /~

~~1Exact HSDPT FSDPT CPT m HSDPT FSOPT
(23) (24)

0.0932 0.0931 0.093u 0.0955
~

I 0.704 0.7038 0.7036 0.7180

I (0.0963)'

I
(0.7224)

2 0.226 0.2222 0.2219 0.2360 1 2 1.376 1.3738 1.3729 1.4273
I (0.2408) (1.4(48)

I 2 0.3421 0.3411 0.3406 0.3732 2.018 2.0141 2.0123 2.1281
I (0.3853) (2.1671) •
I
I I 0.4171 0.4158 0.4149 0.4629 2.431 2.4263 2.4235 2.5908

i (0.4816) (2.6487)
I 2 0.5239 0.5?21 0.5205 0.5951 2.634 2.6283 2.6250 ,.820/

I (0.62611 (2.8895)
0.6545 0.6520 0.7668 3.612 3.6013 3.5948 3.9575

I (0.8187) (4.0935)
I

0.6889 0.6862 0.6R34 a.R090 3.RO~ 3.7891 3.7818 4.1822
(0.8669) (4.3343)

0.7511 0.7481 0.7446 0.8926 3.98/ 3.9748 3.9666 4.4062

I (0.9632) (4.5751 )
0.8949 0.8896 2.0965 4.535 ,1.5U8 4.5089 5.0729

I (2.2040) (5.2974)
j 0.9268 0.9230 0.9174 1.1365 4890 4.8737 4.11608 5.5133
I (1.2521 ) (5.7790)
i 2 't 2.0053 0.9984 ,.".. Llf'" 5.3915 5.3754 6.1680

I 4
(1.3966) (6.5014)

1.0889 1.084/ 1.0764 1.3716 I I 5 5.411 5.3915 5.3754 6.1680

L (1.5411) (6.5014)

5 - 1.1361 1.1268 1.4475 2 5 6.409 6.3846 6.3609 7.4563
(1.6374) (7.9462)

--------- ------
'numbers in parenthesis denote natural frequencies obtained by omittin9 the rotatory inert! '.

Table 4. Comparison of natural frequencies, ril '" fIIh(y"pTc';;). of an orthotropic square plate
(alh = 10)

Exact [22] HSDPr FSDPr
CPr

m n 11* m I1* III 11* m I

0.0474 1.30n 1.6530 0.0474 1.3086 1.65SO 0.0474 1.3159 1.6646 0.0493
(0.0497)+

2 0.1033 1.3331 1.7160 0.1033 1.3339 1.7209 0.1032 1.3410 1.7305 0.1095
(0.1120)

2 0.1188 1.4205 1.680S 0.1189 1.4216 1.6827 0.1187 1.4285 1.6921 0.1327
(0.1354)

2 2 0.1694 1.4316 1.7509 0.1695 1.4323 1.7562 0.1692 1.4393 1.76S5 0.1924
(0.1987)

3 0.1888 1.3765 1.8lIS 0.1888 1.3772 1.8210 0.1884 1.3841 1.8305 0.2070
(0.2154)

3 0.2180 1.S777 1.7334 0.2184 1.S789 1.7361 0.2178 1.5857 1.74SO 0.2671
(0.2779)

2 3 0.2475 1.4596 1.8523 0.2477 1.4603 1.8622 0.2469 1.4670 1.8714 0.2879
(0.3029)

3 2 0.2624 1.5651 1.8195 0.2629 1.S6S8 1.8255 0.2619 1.5725 1.8341 0.3248
(0.3418)

4 0.2969 1.4372 1.9306 0.2969 1.4379 1.9466 0.2959 1.4445 1.9560 0.3371
(0.3599)

4 0.3319 1.7179 1.8548 0.3330 1.7186 1.8S88 0.3311 1.7265 1.8657 0.4471
(0.4n3)

3 3 0.3320 1.S737 1.9289 0.3326 1.5744 1.9395 0.3310 1.5812 1.9479 0.4172
(0.4470)

2 4 0.3476 1.5068 1.9749 0.3479 1.S076 1.9912 0.3463 1.5141 2.0002 0.4152
(0.4480)

4 2 0.3070 1.6940 1.9447 0.3720 1.6947 1.9514 0.3696 1.7022 1.9S86 0.S018
(0.5415)

* Pure thick-twist modes
+ Numbers in parenthesis indicate frequencies obtained by omitting the rotatory inertia.

(1) The classical plate theory overestimates the frequencies. The errors increase with
increasing mode numbers.

(2) The frequencies predicted by FSDPT are fairly accurate; the error increases with
increasing mode number.

(3) The frequencies predicted by HSDPT are the most accurate of all.
(4) The effect of transverse shear deformation increases with increasing mode

number.
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CONCLUSIONS

A refined nonlinear shear deformation theory of fiat plates is presented. The theory
accounts for (a) zero traction boundary conditions on the top and bottom faces of the plate,
(b) cubic variation ofin-plane displacements through thickness (hence, a parabolic distribu
tion of transverse shear stresses through thickness), and (c) the von Karman strains.
Additional features of the theory are that no shear correction factors are used in the theory,
and the resulting equations of motion include the same variables as in the first-order shear
deformation theory. Exact solutions for the case ofinfinitesimal displacements are presented
for bending and free vibration of simply supported rectangular plates of isotropic as well as
orthotropic materials. The solutions of the higher-order theory are found· to be in excellent
agreement with the exact solutions of the three-dimensional theory of elasticity. The
numerical results should serve as references for those who wish to develop a finite-element
model of the higher-order theory described herein. Extension of the present theory to
laminated anisotropic plates is presented by the author (see[25]).
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APPENDIX
TrQ1lSVtrse shear stresses from stress equilibrium equations

The transverse normal and shear stresses obtained from the stress equilibrium equations for the classical plate
theory, the first-order shear deformation theory, and the higher-order theory (for simply supported, orthotropic
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rectangular plates) are given below:

(1) Classical plate theory

a.'" - ~[I +(¥)] +{I +(¥)](<<4QIl + 2lZ2y2{2GI2 + Qlj+ P4QuJW sin ax sinpy

a". = ~[I -(¥)J!«'QIl + (2G1z + Q.jlZP2]W cos lIX sin py

a,.'"~ [I - (~)J!«ZP(2GI2+ QIJ + P'QuJW sin ax cos py

where Q, are given by eqn (86), and W denotes the amplitude in eqn (22).

(2) First-order shear deformation theory

a.= :;[I +(~)]+{I+(~)]{[«'QIl+«P~2GI2+QIJ]x+ [(2GIZ + QljlZZP + P'QuJY} sin lIXsinpy

a",""' -~[I-(~)}(IIZQIl+P2GI2lX + (G12 +QIJ«Py] cos ax sinpy

(1,. ... -~[1-(¥)}(<<2GIZ+ fJzQwY + (G12 +QljlZPXlsin lIX cosfJy

(3) Higher-order theory (present)

ii. ""' (1.-~[1 +(~)J + 1{1 +(~)]{[«4QIl +2(2G12+QljlZ2p2 + fJ4QZ2IW

+[«'QIl + «P~2GIZ+QIJJX(<<2fJ(2GI2+QIJ+P'QZ2IY} sin ax sin py

i.=(1'..+:[t-(¥)lU«3QIl +(2GI2 + QljlZP2]W

+(<<zQIl + P2G1JX + «P(GI2 + QljY]cos lIX sin py

ii,. = (1,.+ ~[1-(¥)J(2GlZ+QljlZZP +P'QZ2IW

+ «P(GI2 + Q\jX +(<<lGll + IJ2QwY} sin ax cos py

where (I" (I". and (1,. are the expressions given for the lirst-order shear deformation theory.


